Energy landscape analyses of disordered histone tails reveal special organization of their conformational dynamics.
نویسندگان
چکیده
Histone tails are highly flexible N- or C-terminal protrusions of histone proteins which facilitate the compaction of DNA into dense superstructures known as chromatin. On a molecular scale histone tails are polyelectrolytes with high degree of conformational disorder which allows them to function as biomolecular "switches", regulating various genetic processes. Unfortunately, their intrinsically disordered nature creates obstacles for comprehensive experimental investigation of both the structural and dynamical aspects of histone tails, because of which their conformational behaviors are still not well understood. In this work we have carried out ∼3 microsecond long all atom replica exchange molecular dynamics (REMD) simulations for each of four histone tails, H4, H3, H2B, and H2A, and probed their intrinsic conformational preferences. Our subsequent free energy landscape analysis demonstrated that most tails are not fully disordered, but show distinct conformational organization, containing specific flickering secondary structural elements. In particular, H4 forms β-hairpins, H3 and H2B adopt α-helical elements, while H2A is fully disordered. We rationalized observed patterns of conformational dynamics of various histone tails using ideas from physics of polyelectrolytes and disordered systems. We also discovered an intriguing re-entrant contraction-expansion of the tails upon heating, which is caused by subtle interplay between ionic screening and chain entropy.
منابع مشابه
Using Energy Landscape Theory to Uncover the Organization of Conformational Space of Proteins in Their Native States
Title of dissertation: USING ENERGY LANDSCAPE THEORY TO UNCOVER THE ORGANIZATION OF CONFORMATIONAL SPACE OF PROTEINS IN THEIR NATIVE STATES. Davit A Potoyan, Doctor of Philosophy, 2012 Dissertation directed by: Professor Garegin A Papoian Chemical Physics Program The functional motions of proteins navigate on rugged energy landscapes. Hence, mapping of these multidimensional landscapes into low...
متن کاملChromatin Unfolding by Epigenetic Modifications Explained by Dramatic Impairment of Internucleosome Interactions: A Multiscale Computational Study.
Histone tails and their epigenetic modifications play crucial roles in gene expression regulation by altering the architecture of chromatin. However, the structural mechanisms by which histone tails influence the interconversion between active and inactive chromatin remain unknown. Given the technical challenges in obtaining detailed experimental characterizations of the structure of chromatin,...
متن کاملRegulation of the H4 tail binding and folding landscapes via Lys-16 acetylation.
Intrinsically disordered proteins (IDP) are a broad class of proteins with relatively flat energy landscapes showing a high level of functional promiscuity, which are frequently regulated through posttranslational covalent modifications. Histone tails, which are the terminal segments of the histone proteins, are prominent IDPs that are implicated in a variety of signaling processes, which contr...
متن کاملHistone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy.
Chromatin is a supramolecular assembly of DNA and histone proteins, organized into nucleosome repeat units. The dynamics of chromatin organization regulates DNA accessibility to eukaryotic transcription and DNA repair complexes. Yet, the structural and dynamic properties of chromatin at high concentrations characteristic of the cellular environment (>∼200 mg/mL) are largely unexplored at the mo...
متن کاملFlexible histone tails in a new mesoscopic oligonucleosome model.
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 19 شماره
صفحات -
تاریخ انتشار 2011